US009449421B2

a2 United States Patent

Kwon et al.

US 9,449,421 B2
Sep. 20, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR
RENDERING IMAGE DATA

(58) Field of Classification Search
None
See application file for complete search history.

(71) Applicant: Samsung Electronics Co., Ltd., .
Suwon-si (KR) (56) References Cited
(72) Inventors: Kwon-taek Kwon, Seoul (KR); U.S. PATENT DOCUMENTS
Seok-yoon Jung, Seoul (KR) 7456,846 Bl 11/2008 King et al.
2010/0177105 Al 7/2010 Nystad et al.
(73) Assignee: Samsung Electronics Co., Ltd., 2011/0199377 Al 8/2011 Jang et al.
Suwon-si (KR) 2012/0176386 Al 7/2012 Hutchins
2015/0187123 Al* 7/2015 Hwangc..... GO6T 1/20
. 345/421
(*) NOtlce: SubJeCt to any dlSCIalmerS the term Ofthls 2016/0027144 Al * 1/2016 Fernandez """""""" G06T 1/60
patent is extended or adjusted under 35 345/522
U.S.C. 154(b) by 96 days. . .
* cited by examiner
(21) Appl. No.: 14/190,406 Primary Examiner — Peter Hoang
(22) Filed: Feb. 26, 2014 (74) Attorney, Agent, or Firm — NSIP Law
57 ABSTRACT
(65) Prior Publication Data 7 . . .
Provided is a rendering method and apparatuses for render-
US 2015/0091892 Al Apr. 2, 2015 ing image data. The rendering method includes generating a
. L. L. primitive list by performing geometry processing on a
(30) Foreign Application Priority Data current tile to be rendered; determining whether the current
Oct. 2, 2013 (KR) wovvoreereerrerrse 10-2013-0118131 \lle is identical to a previous tile from among tiles included
in a previously rendered frame; and in response to the
(51) Int.Cl previous tile being identical to the current tile, generating an
GO6T 15/00 (2011.01) grﬁcage of'the current tile by re-using an image of the previous
(52) US. CL ’
CPC ..o GO6T 15/005 (2013.01) 16 Claims, 5 Drawing Sheets
11 12 13 14 15 17
/ / / . is
Vertex Generating Testing and
Vertices Shader Primitives Rasterization Pixel Shader Mixing
Frame
Buftfer
o e o o
®
3
o ©
1 ® ®

Texture

16

US 9,449,421 B2

Sheet 1 of 5

Sep. 20, 2016

U.S. Patent

9l

\

ainixe |

AN AN AANANN

Jaling
aweld

/

81l

o
%
%
7
BUIXIA Japeys |exid uoneziaelsey SaANIWINY Japeysg
pue Bunsa | BuneieusL) XaloA
Ll Gl vl el Sl
T "OIld

o

L
® 0
14

S0IUBA

/

L

U.S. Patent

Sep. 20, 2016

Sheet 2 of 5

FIG. 2
100
RENDERING APPARATUS
110 120
GEOMETRY PIXEL
PROCESSING UNIT PROCESSING UNIT
FIG. 3
100
RENDERING APPARATUS
130

110

DRAW COMMAND
HISTORY BUFFER

GEOMETRY

140

PROCESSING UNIT

120

PRIMITIVE HISTORY
BUFFER

150

SCENE BUFFER

160

PIXEL

FRAME
HISTORY BUFFER

PROCESSING UNIT

170

FRAME BUFFER

US 9,449,421 B2

US 9,449,421 B2

Sheet 3 of 5

Sep. 20, 2016

U.S. Patent

a IOV 9 3OV 2 IOV g 3oVl
4344N8 INVH4 5 al q:ql
o ANVAINOD MyHd ONVININGD MYHE
1L L
ANy ey
4344N9 AHOLSIH IV
JOVAI MIN
31vHINID 0ot
obp
a:a
ONVINNOD MYHQ
TUL INTHHND
DNISSIDOH OL WOINZQl = 1L
73XId SILTIL |
WHO=43d SNOIAZHA SI 3HIHL
H3H1IHM ININE3LIA
st 0zp 9l
ONVINWOD MYHQ
T1L
S

Ly

¥ OId

US 9,449,421 B2

Sheet 4 of 5

Sep. 20, 2016

U.S. Patent

(2u:al MvHQ) (1U:al My4Q) TN
LSIT 3AILINIE 1S 3ALINE
¥ 13941 53ANTH T 3NV
(zU:al MvHQ) (1U:al MYHQ)
1S AN 1S IALINIEG F1ILN
(29 :al MyHQ) (19 :al MYHQ) TIIL
1S IALLINIE 1S IALLINIHG
(6B :Ql MvdQ) (g8 :dl MvHQ) (LB :dl MvHQ) TIIL v
1517 FAILINIH 1SI1 IALINIH 1S 3ALINIHA

M 139HYL H3ANTY | FNVHS

G "IId

U.S. Patent Sep. 20, 2016 Sheet 5 of 5

US 9,449,421 B2

FIG. 6
PERFORM GEOMETRY PROCESSING |— 610
DETERMINE TILE TO BE RENDERED |- 620
630

DETERMINE WHETHER
A PREVIOUS TILE THAT IS IDENTICAL TO
A CURRENT TILE FROM AMONG
THE TILES INCLUDED IN A PREVIOUSLY
RENDERED FRAME

670

DETERMINE
WHETHER THERE IS ADDITIONAL
TILE FOR CURRENT
RENDER TARGET

DETERMINE WHETHER
THERE IS ADDITIONAL RENDER TARGET
FOR CURRENT FRAME

NEXT FRAME

640 ‘ ‘ 650
GENERATE IMAGE OF CURRENT RENDER IMAGE OF CURRENT TILE
TILE BY RE-USING IMAGE OF !
PREVIOUS TILE THAT IS IDENTICAL
TO CURRENT TILE STORE IMAGE OF CURRENT
TILE IN FRAME BUFFER
| 660

US 9,449,421 B2

1

METHOD AND APPARATUS FOR
RENDERING IMAGE DATA

RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119
(a) of Korean Patent Application No. 10-2013-0118131,
filed on Oct. 2, 2013, in the Korean Intellectual Property
Office, the entire disclosure of which is hereby incorporated
by reference for all purposes.

BACKGROUND

1. Field

The following description relates to methods and appa-
ratuses for rendering three-dimensional (3D) data.

2. Description of Related Art

Three-dimensional (3D) graphics application program
interface (API) standards include OpenGL, OpenGL ES, and
Direct 3. API standards include a method of performing
rendering on each frame and displaying an image. Render-
ing includes geometry processing and pixel processing. The
geometry processing is a process of dividing objects
included in a 3D space into a plurality of primitives, and the
pixel processing is a process of determining colors of the
primitives. When rendering is performed on each frame, a
large amount of computation is performed and a large
amount of power is consumed. Accordingly, when rendering
is performed, it is advantageous to reduce a computational
amount and the number of accesses to a memory.

SUMMARY

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

In one general aspect there is provided a rendering
method including generating a primitive list by performing
geometry processing on a current tile to be rendered; deter-
mining whether the current tile is identical to a previous tile
from among tiles included in a previously rendered frame;
and in response to the previous tile being identical to the
current tile, generating, at a pixel processor, an image of the
current tile by re-using an image of the previous tile.

The determining may comprise determining that the cur-
rent tile is identical to the previous tile based on at least one
of whether the current tile and the previous tile are included
in same render target, whether the current tile and the
previous tile have same tile attributes, or whether the current
tile and the previous tile include same primitive list.

The tile attributes may comprise at least one of coordi-
nates or a size of a tile.

The rendering method may further comprise, in response
to no previous tile being identical to the current tile, gen-
erating the image of the current tile by performing pixel
processing on the current tile, and generating a final image
by combining images generated for all tiles included in a
current frame.

The generating of the current image may comprise gen-
erating of the current image by copying the image of the
previous tile to an image area of the current tile.

The generating of the current image may comprise gen-
erating of the current image by setting a pointer of an image
area of the current tile to indicate an image area of the
previous tile.

10

15

20

25

30

35

40

45

50

55

60

65

2

The previous tile may comprise at least one of an image,
information about a tile attribute, a processing order in
which primitive lists are processed, or a draw identification
).

The performing of the geometry processing may com-
prise, in response to a previous draw command being
identical to a draw command of the current tile, performing
geometry processing on the current tile using a primitive list
generated by geometry processing of the previous draw
command.

In another general aspect there is provided a rendering
apparatus including a geometry processor configured to
generate a primitive list by performing geometry processing
on a current tile to be rendered; and a pixel processor
configured to determine whether the current tile is identical
to a previous tile from among previous tiles included in a
previous rendered frame, and to generate an image of the
current tile by re-using an image of the previous tile in
response to the previous tile being identical to the current
tile.

The pixel processor determines that the current tile and
the previous tile are identical to each other based on at least
one of whether the current tile and the previous tile are
included in same render target, the current tile and the
previous tile have same tile attribute, or the current tile and
the previous tile include same primitive list.

The tile attribute may comprise at least one of coordinates
or a size of a tile.

In response to no previous tile being identical to the
current tile, the pixel processor may be further configured to
generate the image of the current tile by performing pixel
processing on the current tile, and to generate a final image
by combining images generated for all tiles included in a
current frame.

The pixel processor may be further configured to re-uses
the image of the previous tile by copying the image of the
previous tile to an image area of the current tile.

The pixel processor may be further configured to re-uses
the image of the previous tile by setting a pointer of an image
area of the current tile to indicate an image area of the
previous tile.

The previous tile may comprise at least one of an image,
information about a tile attribute, a processing order in
which primitive lists are processed, or a draw identification
).

In response to a previous draw command being identical
to a draw command of the current tile, the geometry pro-
cessor may be further configured to perform geometry
processing on the current tile using a primitive list that is
generated by geometry processing of the previous draw
command.

In another general aspect there is provided a rendering
apparatus including a geometry processor configured: to
determine whether a current draw command for a current tile
is identical to a previous draw command, in response to the
current draw command and the previous draw command
being identical, to output a result of geometric processing
based on the primitive list of the previous draw command,
and in response to the current draw command and the
previous draw command not being identical, to geometry
process the current tile to generate primitive list; and a pixel
processor configured to generate an image of the current tile
by re-using an image of a previous tile in response to the
previous tile being identical to the current tile.

The geometry processor may determine that the current
draw command and the previous draw command are iden-
tical to each other based on binding information of the

US 9,449,421 B2

3

current draw command and the previous draw command,
and wherein the binding information comprises at least one
of vertex attribute data, index data, vertex shader binary,
uniform data, texture data, or configuration data.

The geometry processor may be further configured to
store the generated primitive list and the corresponding
current draw command.

Other features and aspects will be apparent from the
following detailed description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating an example of a process
of processing a three-dimensional (3D) image.

FIG. 2 is a diagram illustrating an example of a rendering
apparatus.

FIG. 3 is a diagram illustrating an example of a rendering
apparatus.

FIG. 4 is a diagram illustrating an example of rendering
method using an image of a previous tile.

FIG. 5 is a diagram illustrating an example of structure in
which data on a previous frame is stored.

FIG. 6 is a diagram illustrating an example of a rendering
method.

Throughout the drawings and the detailed description,
unless otherwise described, the same drawing reference
numerals will be understood to refer to the same elements,
features, and structures. The relative size and depiction of
these elements may be exaggerated for clarity, illustration,
and convenience.

DETAILED DESCRIPTION

The following detailed description is provided to assist
the reader in gaining a comprehensive understanding of the
methods, apparatuses, and/or systems described herein.
However, various changes, modifications, and equivalents
of the systems, apparatuses and/or methods described herein
will be apparent to one of ordinary skill in the art. The
progression of processing steps and/or operations described
is an example; however, the sequence of and/or operations
is not limited to that set forth herein and may be changed as
is known in the art, with the exception of steps and/or
operations necessarily occurring in a certain order. Also,
descriptions of functions and constructions that are well
known to one of ordinary skill in the art may be omitted for
increased clarity and conciseness.

The features described herein may be embodied in dif-
ferent forms, and are not to be construed as being limited to
the examples described herein. Rather, the examples
described herein have been provided so that this disclosure
will be thorough and complete, and will convey the full
scope of the disclosure to one of ordinary skill in the art.

FIG. 1 is a diagram illustrating an example of a process
of processing a three-dimensional (3D) image, the process
including operations 11 through 17. The operations in FIG.
1 may be performed in the sequence and manner as shown,
although the order of some operations may be changed or
some of the operations omitted without departing from the
spirit and scope of the illustrative examples described. The
operations 11 through 13 are operations of performing
geometry processing, and the operations 14 through 17 are
operations of performing pixel processing.

The operation 11 is an operation of generating vertices
indicating an image. The vertices are generated in order to
describe objects included in the image. The operation 12 is
an operation of shading the generated vertices. A vertex

10

15

20

25

30

35

40

45

50

55

60

65

4

shader may perform shading on the vertices by assigning
colors to the vertices generated in the operation 11.

The operation 13 is an operation of generating primitives.
The term ‘primitive’ refers to a polygon that is formed of
points, lines, or vertices. For example, the primitives may be
triangles formed by connecting three vertices.

The operation 14 is an operation of rasterizing a primitive.
When the primitive is rasterized, the primitive is divided into
a plurality of fragments. The term ‘fragment’ refers to a
portion of a primitive and may be a basic unit for performing
image processing. A primitive includes only information
about vertices. Accordingly, interpolation is performed
when fragments between vertices are generated during ras-
terization.

The operation 15 is an operation of shading pixels.
Although shading is performed in units of pixels, shading
may also be performed in units of fragments. For example,
when pixels or fragments are shaded, colors of the pixels or
the fragments are assigned to pixels of fragments.

The operation 16 is an operation of texturing the pixels or
the fragments. Texturing is a method of using a previously
generated image to designate a color of a pixel or a fragment.
For example, when a color is designated to a fragment,
shading is performed through computation whereas textur-
ing is a method of assigning the same color as a color of an
image, which has been previously generated to a fragment
corresponding to the image.

In the operation 15 or 16, a large computational amount
is required in order to shade or texture each pixel or
fragment. Accordingly, it is advantageous to reduce the
computational amount by more efficiently performing shad-
ing or texturing. An example of a method of reducing the
computational amount during shading is hidden surface
removal (HSR). HSR is a method that does not perform
shading on a first object covered by a second object that is
disposed in front of the first object.

The operation 17 is an operation of performing testing and
mixing. The operation 18 is an operation of displaying a
frame that is stored in a frame buffer. A frame generated
through the operations 11 through 17 is stored in the frame
buffer. The frame that is stored in the frame buffer is
displayed on a display device.

FIG. 2 is a diagram illustrating an example of a rendering
apparatus 100. Referring to FIG. 2, the rendering apparatus
100 performs rendering on a current frame by using a result
of rendering performed on a previous frame. The rendering
apparatus 100 includes a geometry processing unit 110 and
a pixel processing unit 120.

The geometry processing unit 110 receives a draw com-
mand, and performs geometry processing according to the
received draw command. The geometry processing unit 110
generates a primitive list in response to the draw command.
If an input draw command is identical to a draw command
that has been previously processed, the geometry processing
unit 110 does not need to repeat the same computation.

The geometry processing unit 110 performs geometry
processing on the current frame by using a result of render-
ing performed on the previous frame. The geometry pro-
cessing unit 110 uses a result of geometry processing
performed in response to the previous draw command.

When a current draw command is input, the geometry
processing unit 110 determines if there is a previous draw
command that is identical to the current draw command. The
geometry processing unit 110 may compare binding infor-
mation and may determine whether the current and previous
draw commands are identical. The geometry processing unit
110 compares binding information of the current draw

US 9,449,421 B2

5

command with binding information of previous draw com-
mand. Because of the comparison, the geometry processing
unit 110 determines a previous draw command that has
binding information identical to the binding information of
the current draw command.

The term ‘binding information’ refers to information
indicating which data a draw command uses as an input.
Examples of input data used by a draw command may
include, but is not limited to, vertex attribute data, index
data, vertex shader binary, uniform data, texture data, and
configuration data.

The geometry processing unit 110 stores in a scene buffer
150 the primitive list indicating the result of the geometry
processing performed on the previous draw command. The
geometry processing unit 110 outputs a result of geometry
processing for the current draw command by using the
primitive list of the previous draw command, without per-
forming geometry processing in response to the current draw
command. Since the current draw command and the previ-
ous draw command are identical to each other, the geometry
processing unit 110 need not perform geometry processing
in response to the current draw command and uses the result
of the geometry processing performed in response to the
previous draw command to respond to the current draw
command. Accordingly, the geometry processing unit 110
performs geometry processing for the current draw com-
mand by storing the primitive list of the previous draw
command in the scene buffer 150.

When there is no previous draw command identical to the
current draw command, the geometry processing unit 110
performs geometry processing in response to the current
draw command, and stores a primitive list that is generated
as a result of the geometry processing in the scene buffer
150. Since there is no previous draw command identical to
the current draw command, the geometry processing unit
110 has no previous data to use. Accordingly, the geometry
processing unit 110 generates a primitive list by performing
geometry processing in response to the current draw com-
mand, and stores the generated primitive list in the scene
buffer 150.

The geometry processing unit 110 determines primitive
lists for all input draw commands, and stores the determined
primitive lists in the scene buffer 150. When all draw
commands for a current frame are processed, the geometry
processing unit 110 ends geometry processing for the current
frame.

The geometry processing unit 110 and the pixel process-
ing unit 120 use tile-based rendering. That is, the geometry
processing unit 110 and the pixel processing unit 120 divide
one frame into a grid of sections, and independently render
each of the sections. Each section is called a tile.

When one frame is formed of a plurality of tiles, the pixel
processing unit 120 may re-use an image of the previous
frame for a tile that has no change between the previous
frame and the current frame. For a tile that has a change
between the previous frame and the current frame, the pixel
processing unit 120 may generate an image by performing
rendering.

The pixel processing unit 120 performs pixel processing
on the current frame by using the primitive lists that are
stored in the scene buffer 150. The pixel processing 120 uses
a result of pixel processing of the previous frame. The pixel
processing unit 120 renders the current frame by re-using
tiles that are generated as a result of rendering of the
previous frame.

The pixel processing unit 120 determines whether there is
a previous tile that is identical to a current tile, and renders

25

30

35

40

45

50

55

65

6

the current tile based on whether or not an identical tile is
present. When there is a previous tile that is identical to the
current tile, the pixel processing unit 120 re-uses an image
of the previous tile. The image of the previous tile is an
image that is generated by rendering the previous tile. When
there is no previous tile that is identical to the current tile,
the pixel processing unit 120 performs rendering on the
current tile, i.e., the pixel processing unit 120 performs
shading on each of pixels included in the current tile.

The pixel processing unit 120 renders all the tiles included
in the current frame, and generates a final image by using the
rendered tiles. A method of generating each tile may vary
based on whether or not an identical previous tile is present.
The pixel processing unit 120 generates a final image by
mapping an image that is generated by re-using a previous
image to an image that is generated by performing shading.

The pixel processing unit 120 determines a previous tile
that is identical to the current tile from among previous tiles
included in a previously rendered frame. The term “previous
frame” refers to a frame that has already been rendered and
whose image has already been generated, and when a
previous frame is divided into a grid of sections, the term
“previous tile” refers to each of the sections. The term
“current frame” refers to a frame that is currently being
rendered, and when a current frame is divided into a grid of
sections, the term “current tile” refers to each of the sections.

The pixel processing unit 120 determines that the current
tile and the previous tile are identical to each other based on
whether the current tile and the previous tile are included in
the same render target, have the same tile attribute, and
include the same primitive list.

The pixel processing unit 120 determines whether the
current tile and the previous tile are included in the same
render target. The pixel processing unit 120 generates an
image of the render target before generating a final image,
and then generates the final image by performing re-render-
ing by using the image of the render target as an input
texture. The pixel processing unit 120 may generate and use
a plurality of intermediate images (of a render target) in
order to generate a final image for one frame. Accordingly,
when the current tile and the previous tile are included in the
same render target, the pixel processing unit 120 determines
that the current tile and the previous tile are identical to each
other. When applications use the same frame buffer object
without changing an attribute of the frame buffer object
according to a graphics application program interface (API)
standard, the pixel processing unit 120 may determine that
the current tile and the previous tile are included in the same
render target.

The pixel processing unit 120 determines whether the
current tile and the previous tile have the same tile attribute.
A tile attribute includes coordinates and a size of a tile. The
coordinates of the tile indicate a position of the tile. The size
of'the tile indicates horizontal and vertical lengths of the tile.
Accordingly, the pixel processing unit 120 determines that
the current tile and the previous tile are identical to each
other based on whether the current tile and the previous tile
have the same coordinates and the same size.

The pixel processing unit 120 determines whether the
current tile and the previous tile include the same primitive
list. The term “primitive list” is a result of geometry pro-
cessing. The geometry processing unit 110 performs geom-
etry processing on the previous tile and generates a primitive
list for the previous tile. The geometry processing unit 110
also performs geometry processing on the current tile, and
generates a primitive list for the current tile. The pixel
processing unit 120 compares the primitive list of the current

US 9,449,421 B2

7

tile with the primitive list of the previous tile to determine
that the current tile and the previous tile are identical based
on whether the primitive lists of the current tile and the
previous tile are identical to each other.

The pixel processing unit 120 compares draw IDs of the
primitive lists, and determines that the primitive lists of the
current tile and the previous tile are identical to each other
based on whether the draw IDs of the primitive lists are
identical to each other. During geometry processing, the
geometry processing unit 110 stores input draw commands
in a draw command history buffer 130, and assigns IDs to
the draw commands. Duplicate draw commands are stored
only once and have the same ID. That is, draw commands
that are identical to each other have the same ID. The
geometry processing unit 110 performs geometry processing
based on an input draw command, and generates a primitive
list as a result of the geometry processing. The generated
primitive list is based on an ID of the input draw command.
Accordingly, the pixel processing unit 120 may determine
whether primitive lists are identical to each other by com-
paring the draw IDs of the primitive lists.

The pixel processing unit 120 renders the current tile by
using an image of the previous tile. The pixel processing unit
120 may re-use an image of the previous tile that is identical
to the current tile by copying an image of the previous tile
to an image area of the current tile. The pixel processing unit
120 may copy an image of the previous tile that has been
previously stored in a storage space to an image area of the
current tile. For example, the image of the previous tile may
be stored in a frame history buffer 160, and an image of the
current tile may be stored in the frame buffer 170. The pixel
processing unit 120 may copy the image of the previous tile
that from the frame history buffer 160 and store it in the
frame buffer 170.

Alternatively, the pixel processing unit 120 may re-use an
image of the previous tile that is identical to the current tile
by connecting a pointer to an image area of the current tile
to indicate an image area of the previous tile. That is, the
pixel processing unit 120 may omit a process of copying an
image of the previous tile, and may re-use the image of the
previous tile by designating an address that identifies a
storage space in which the image of the previous tile is
stored. When the image of the previous tile is stored in the
frame history buffer 160 and an image of the current tile is
stored in the frame buffer 170, the pixel processing unit 120
stores a pointer that indicates an address of the image of the
previous tile stored in the frame history buffer in an area of
the frame buffer for the current tile. Since an image that is
stored in a memory is re-used by using a pointer, a process
of reading from and writing to the memory is omitted (that
is, a memory bandwidth is reduced). Accordingly, the pixel
processing unit 120 may generate a final image by using an
image stored in a storage space that is identified by the
address indicated by the pointer stored in the frame buffer.

The pixel processing unit 120 stores a tile that has been
completely rendered in the frame history buffer 160. The
pixel processing unit 120 stores an image of the tile,
information about a tile attribute of the tile, a processing
order in which primitive lists are processed, and a draw ID.
The term “image of a tile” refers to an image that is
generated by rendering a tile. The term “information about
a tile attribute of a tile” refers to information including a
position and a size of a tile. The term “processing order in
which primitive lists are processed” refers to which primi-
tive list is first processed from among primitive lists
included in a tile. The term “draw ID” refers to an ID of a
draw command that is used to generate a tile. The pixel

20

30

40

45

8

processing unit 120 stores additional information along with
the image of the tile and uses the additional information
when the image of the tile is re-used.

When there is no previous tile that is identical to the
current tile, the pixel processing unit 120 generates an image
of the current tile by performing pixel processing on the
current tile. Since there is no previous tile that is identical to
the current tile, the pixel processing unit 120 generates a
new image by using an existing method for the current tile.

The pixel processing unit 120 generates a final image by
combining images that are generated for all tiles included in
the current frame. The pixel processing unit 120 generates
images of tiles that are generated by dividing the current
frame, and generates a final image by mapping the generated
images to areas of the final image.

FIG. 3 is a diagram illustrating an example of the ren-
dering apparatus 100. The description of the rendering
apparatus 100 in FIG. 2 is also applicable to the rendering
apparatus 100 of FIG. 3, and thus will not be repeated here.
Referring to FIG. 3, the rendering apparatus 100 further
includes a draw command history buffer 130, a primitive
history buffer 140, a scene buffer 150, a frame history buffer
160, and a frame buffer 179. The buffers 130 through 170 are
memories or caches.

The draw command history buffer 130 stores information
about an input draw command. For example, the draw
command history buffer 130 may store binding information
of draw commands for previous n number of frames.
Accordingly, when comparing the draw commands, the
geometry processing unit 110 uses the binding information
that is stored in the draw command history buffer 130.

The primitive history buffer 140 stores a result of geom-
etry processing that is performed in response to a draw
command. The primitive history buffer 140 stores a primi-
tive list that is generated by geometry processing. The
geometry processing unit 110 may load the primitive list that
is stored in the primitive history buffer 140 to the scene
buffer 150.

The binding information that is stored in the draw com-
mand history buffer 130 and the primitive list that is stored
in the primitive history buffer 140 correspond to each other.
The binding information of the draw command history
buffer 130 includes a pointer for the primitive list. When the
binding information of a drawing command in the draw
command history buffer 130 is identical to the binding
information of a current draw command, the geometry
processing unit 110 loads a primitive list that is indicated by
the pointer included in the binding information stored in the
draw command history buffer 130 to the scene buffer 150.

The scene buffer 150 stores primitive lists. The primitive
lists that are stored in the scene buffer 150 are primitive lists
for a current frame that is to be rendered. The pixel pro-
cessing unit 120 generates an image of the current frame by
performing rendering using the primitive lists that are stored
in the scene buffer 150.

The frame history buffer 160 stores a result of pixel
processing for a previous frame. That is, the frame history
buffer 160 stores an image of the previous frame. An image
may be stored in the frame history buffer 160 for every target
rendered.

The frame history buffer 160 also stores information
about a tile. The frame history buffer 160 stores a resulting
image and attribute information of the tile. The frame history
buffer 160 also stores a processing order in which primitive
lists used to generate an image of the tile are processed and
a draw ID.

US 9,449,421 B2

9

When pixel processing for one render target is completed,
the pixel processing unit 120 stores tiles included in the
rendered target and information about the tiles in the frame
history buffer 160.

The frame buffer 170 stores images of tiles included in a
current target that is rendered. The frame buffer 170 may
also store a pointer that indicates an address to identify a
storage space in which an image of a tile is stored. The pixel
processing unit 120 generates a final image by using the
images of the tiles stored in the frame buffer 170.

FIG. 4 is a diagram illustrating an example of a method
for rendering using an image of a previous tile. Although, in
the example shown in FIG. 4, pixel processing is performed
on two tiles, tiles 411 and 412, in FIG. 4, more tiles may be
input to the pixel processing unit 120. Referring to FIG. 4,
the pixel processing unit 120 performs pixel processing
based on to whether a previous tile that is identical to an
input tile is present or not.

The tile 411 and the tile 412 are input to the pixel
processing unit 120. A primitive list of the tile 411 has C as
draw 1D information. A primitive list of the tile 412 has D
as draw ID information.

In operation 420, the pixel processing unit 120 compares
the input tiles 411 and 412 with previous tiles 413 and 414
that are stored in the frame history buffer 160. The pixel
processing unit 120 may compare draw command IDs
included in the tiles 411 and 412 with draw command IDs of
the previous tiles 413 and 414 and may determine whether
the input tiles 411 and 412 and the previous tiles 413 and 414
are identical or not.

The file 411 has C as a draw command ID that is identical
to that of the tile 414 stored in the frame history buffer 160.
Accordingly, for tile 411, the pixel processing unit 120 does
not proceed to operation 430, and stores an image C of the
tile 414 in the frame buffer 170. Alternatively, the pixel
processing unit 120 may store a pointer indicating an
address to identify a storage space where the image C is
stored in the frame buffer 170.

The tile 412 does not have a draw command ID that is
identical to that of any of the tiles stored in the frame history
buffer 160. Accordingly, for tile 412, the pixel processing
unit 120 proceeds to operation 430, and performs pixel
processing on tile 412.

In operation 440, the pixel processing unit 120 generates
a new image as a result of the pixel processing performed on
the tile 412. The pixel processing unit 120 stores an image
D of the tile 412 in the frame buffer 170.

When an additional tile is input, the pixel processing unit
120 generates an image of the tile through the operations
described above. The pixel processing unit 120 generates a
final image using the images that are generated for each tile.
The pixel processing unit 120 generates a final image of a
current frame by using images stored in the frame buffer
170.

Since the pixel processing unit 120 generates the image D
for the tile 412 for which a draw command ID was not found
in the frame history buffer 160, the pixel processing unit 120
stores both attribute information and the image D of the tile
412 in the frame history buffer 160.

FIG. 5 is a diagram illustrating an example of a structure
in which data on a previous frame is stored. In FIG. 5, a
render target K 510 of a frame I denotes a render target of
the frame I, and a render target K 520 of a frame J denotes
a render target of the frame J. A frame includes a plurality
of render targets. A render target is an object to be rendered
among a plurality of objects in the frame. Also, a plurality
of tiles are included in the render target.

10

15

20

25

30

35

40

45

50

55

60

65

10

The frame [is a frame that has been completely rendered.
The frame I includes an A tile through an N tile. The A tile
includes multiple primitive lists, and each of the primitive
lists has a draw ID. For example, the primitive lists included
in the A tile have al, a2, and a3 as draw 1Ds. Primitive lists
included in the B tile have bl and b2 as draw IDs. Primitive
lists included in the N tile have nl and n2 as draw IDs.

Primitive lists included in each tile are stored in a pro-
cessing order. For example, in the A tile, since the primitive
list having al as a draw ID is stored and then the primitive
list having a2 as a draw ID a2 is stored, the primitive list
having al as a draw ID is processed earlier than the primitive
list having A2 as a draw ID.

The frame 1 is stored in the frame history buffer 160, and
the frame J is stored in the frame buffer 170. That is, the
frame I denotes a frame that has already been rendered, and
the frame J denotes a frame that is currently being rendered.
Although only the render target K 510 of the frame I and the
render target K 520 of the frame J are shown in FIG. 5, a
plurality of targets to be rendered for the frame I are stored
in the frame history buffer 160, and a plurality of targets to
be rendered for the frame J are stored in the frame buffer
170.

When a current tile and the N tile are identical to each
other, the pixel processing unit 120 stores an image and
additional information of the N tile in the frame buffer 170.
The pixel processing unit 120 compares the current tile with
tiles that are stored in the frame history buffer 160. Here,
since the N ftile is included in the render target K 510, the
current tile is included in the render target K 510. Also, the
current tile has nl and n2 as draw IDs and the N tile has nl
and n2 as draw IDs, therefore, the current tile and the N tile
have the same draw IDs. Since the current tile and the N tile
have the same draw IDs, the current tile and the N tile
include the same primitive lists. Finally, when the current
tile and the N tile have the same tile attribute, the pixel
processing unit 120 determines that the current tile and the
N tile are identical to each other. Accordingly, the pixel
processing unit 120 copies the N tile to the render target K
520 of the frame J.

FIG. 6 is a diagram illustrating an example of a rendering
method. The operations in FIG. 6 may be performed in the
sequence and manner as shown, although the order of some
operations may be changed or some of the operations
omitted without departing from the spirit and scope of the
illustrative examples described. Many of the operations
shown in FIG. 6 may be performed in parallel or concur-
rently. FIG. 6 illustrates another rendering method of the
rendering apparatus 100 of FIG. 2. Accordingly, the descrip-
tion of the rendering apparatus 100 is included in the
description of the rendering method of FIG. 6. The descrip-
tion of FIGS. 1-5 is also applicable to FIG. 6, and thus will
not be repeated here.

In operation 610, the rendering apparatus 100 receives a
draw command to render a current frame, and performs
geometry processing on the received draw command. The
rendering apparatus 100 performs geometry processing in
units of tiles.

In operation 620, the rendering apparatus 100 determines
tiles to be rendered. The rendering apparatus 620 may
sequentially render tiles included in the current frame.

In operation 630, the rendering apparatus 100 determines
whether a previous tile is identical to a current tile from
among the tiles that are included in a previously rendered
frame. If a previous tile is identical to the current tile, the
rendering method proceeds to operation 640, otherwise the
method proceeds to operation 650.

US 9,449,421 B2

11

In operation 640, the rendering apparatus 100 generates
an image of the current tile by re-using an image of the
previous tile that is identical to the current tile. The render-
ing apparatus 100 copies an image of the previous tile and
uses the copied image as an image of the current tile. Thus,
the rendering apparatus 100 omits a process of performing
pixel processing on the current tile, and re-uses the image of
the previous tile, thereby reducing the computational
amount that is caused due to pixel processing.

In operation 650, the rendering apparatus 100 renders an
image of the current tile. Since there is no previous tile that
is identical to the current tile, the rendering apparatus 100
additionally performs rendering on the current tile.

In operation 660, the rendering apparatus 100 stores the
image of the current tile in the frame buffer 170. Also, the
rendering apparatus 100 stores the image and additional
information of the current tile in the frame history buffer
160. The stored image and the stored additional information
of the current tile may be-reused when a next frame is
rendered.

In operation 670, the rendering apparatus 100 determines
whether there is any additional tile for a current render
target. When there is an additional tile, the rendering appa-
ratus 100 returns to operation 620 and performs pixel
processing on the additional tile, otherwise the rendering
apparatus 100 proceeds to operation 680.

In operation 680, the rendering apparatus 100 determines
whether there is any additional render target for a current
frame. When there is an additional render target, the ren-
dering apparatus 100 returns to operation 610 and performs
geometric processing on the additional render target, other-
wise the rendering apparatus 100 performs rendering on a
next frame.

The rendering apparatus 100 may output a resulting image
to a display device. The display device displays the received
resulting image. The display device may be implemented as
a liquid crystal display (LCD), a light-emitting diode (LED)
display, a plasma display panel (PDP), an organic electrolu-
minescent panel, a screen, a terminal, and the like. A screen
may be a physical structure that includes one or more
hardware components that provide the ability to render a
user interface and/or receive user input. The screen can
encompass any combination of display region, gesture cap-
ture region, a touch sensitive display, and/or a configurable
area. The screen can be embedded in the hardware or may
be an external peripheral device that may be attached and
detached from the apparatus. The display device may be a
single-screen or a multi-screen display. A single physical
screen can include multiple displays that are managed as
separate logical displays permitting different content to be
displayed on separate displays although part of the same
physical screen.

The rendering apparatus 100 may include at least one
processor. Each of the geometry processing unit 110 and the
pixel processing unit 130 included in the rendering appara-
tus 100 may be a logic circuit or a program included in an
area of a processor. Alternatively, each of the geometry
processing unit 110 and the pixel processing unit may be an
individual processor.

As described above, since rendering is performed using a
result of pixel processing of a previous tile that is identical
to a current tile, the computational amount in geometry
processing performed on the current tile may be reduced.
Whether the current tile and the previous tile are identical to
each other may be determined by comparing tile attributes of
tiles, primitive lists included in the tiles, and render targets
of the tiles. A resulting image of the previous tile may be

10

15

20

25

30

35

40

45

50

55

60

12

copied, or may be used by using a pointer that indicates a
storage space in which the resulting image of the previous
tile is stored.

The processes, functions, and methods described above
can be written as a computer program, a piece of code, an
instruction, or some combination thereof, for independently
or collectively instructing or configuring the processing
device to operate as desired. Software and data may be
embodied permanently or temporarily in any type of
machine, component, physical or virtual equipment, com-
puter storage medium or device that is capable of providing
instructions or data to or being interpreted by the processing
device. The software also may be distributed over network
coupled computer systems so that the software is stored and
executed in a distributed fashion. In particular, the software
and data may be stored by one or more non-transitory
computer readable recording mediums. The non-transitory
computer readable recording medium may include any data
storage device that can store data that can be thereafter read
by a computer system or processing device. Examples of the
non-transitory computer readable recording medium include
read-only memory (ROM), random-access memory (RAM),
Compact Disc Read-only Memory (CD-ROMs), magnetic
tapes, USBs, floppy disks, hard disks, optical recording
media (e.g., CD-ROMs, or DVDs), and PC interfaces (e.g.,
PCI, PCl-express, Wiki, etc.). In addition, functional pro-
grams, codes, and code segments for accomplishing the
example disclosed herein can be construed by programmers
skilled in the art based on the flow diagrams and block
diagrams of the figures and their corresponding descriptions
as provided herein.

The apparatuses and units described herein may be imple-
mented using hardware components. The hardware compo-
nents may include, for example, controllers, sensors, pro-
cessors, generators, drivers, and other equivalent electronic
components. The hardware components may be imple-
mented using one or more general-purpose or special pur-
pose computers, such as, for example, a processor, a con-
troller and an arithmetic logic unit, a digital signal processor,
a microcomputer, a field programmable array, a program-
mable logic unit, a microprocessor or any other device
capable of responding to and executing instructions in a
defined manner. The hardware components may run an
operating system (OS) and one or more software applica-
tions that run on the OS. The hardware components also may
access, store, manipulate, process, and create data in
response to execution of the software. For purpose of
simplicity, the description of a processing device is used as
singular; however, one skilled in the art will appreciated that
a processing device may include multiple processing ele-
ments and multiple types of processing elements. For
example, a hardware component may include multiple pro-
cessors or a processor and a controller. In addition, different
processing configurations are possible, such a parallel pro-
Cessors.

While this disclosure includes specific examples, it will
be apparent to one of ordinary skill in the art that various
changes in form and details may be made in these examples
without departing from the spirit and scope of the claims and
their equivalents. The examples described herein are to be
considered in a descriptive sense only, and not for purposes
of limitation. Descriptions of features or aspects in each
example are to be considered as being applicable to similar
features or aspects in other examples. Suitable results may
be achieved if the described techniques are performed in a
different order, and/or if components in a described system,
architecture, device, or circuit are combined in a different

US 9,449,421 B2

13

manner and/or replaced or supplemented by other compo-
nents or their equivalents. Therefore, the scope of the
disclosure is defined not by the detailed description, but by
the claims and their equivalents, and all variations within the
scope of the claims and their equivalents are to be construed
as being included in the disclosure.

What is claimed is:

1. A rendering method comprising:

generating a primitive list by performing geometry pro-

cessing on a current tile to be rendered;

determining whether the current tile is identical to a

previous tile from among tiles included in a previously
rendered frame; and

in response to the previous tile being identical to the

current tile, generating, at a pixel processor, an image
of the current tile by re-using an image of the previous
tile,

wherein the determining comprises determining that the

current tile is identical to the previous tile in response
to the current tile and the previous tile being included
in same render target, the current tile and the previous
tile having same tile attributes, and the current tile and
the previous tile including same primitive list.

2. The rendering method of claim 1, wherein the tile
attributes comprises at least one of coordinates or a size of
a tile.

3. The rendering method of claim 1, further comprising,
in response to no previous tile being identical to the current
tile, generating the image of the current tile by performing
pixel processing on the current tile, and

generating a final image by combining images generated

for all tiles included in a current frame.

4. The rendering method of claim 1, wherein the gener-
ating of the current image comprises generating of the
current image by copying the image of the previous tile to
an image area of the current tile.

5. The rendering method of claim 1, wherein the gener-
ating of the current image comprises generating of the
current image by setting a pointer of an image area of the
current tile to indicate an image area of the previous tile.

6. The rendering method of claim 1, wherein the previous
tile comprises at least one of an image, information about a
tile attribute, a processing order in which primitive lists are
processed, or a draw identification (ID).

7. The rendering method of claim 1, wherein the previous
draw command is determined to be identical to the draw
command of the current tile based on a comparison of
binding information of the current draw command with
binding information of the previous draw command.

10

15

20

25

30

35

40

45

50

14

8. A rendering apparatus comprising:

a geometry processor configured to generate a primitive
list by performing geometry processing on a current tile
to be rendered; and

a pixel processor configured to determine whether the
current tile is identical to a previous tile from among
previous tiles included in a previous rendered frame,
and to generate an image of the current tile by re-using
an image of the previous tile in response to the previous
tile being identical to the current tile,

wherein the pixel processor is further configured to deter-
mine that the current tile is identical to the previous tile
in response to the current tile and the previous tile being
included in same render target, the current tile and the
previous tile having same tile attributes, and the current
tile and the previous tile including same primitive list.

9. The rendering apparatus of claim 8, wherein the pixel
processor determines that the current tile and the previous
tile are identical to each other based on at least one of
whether the current tile and the previous tile are included in
same render target, the current tile and the previous tile have
same tile attribute, or the current tile and the previous tile
include same primitive list.

10. The rendering apparatus of claim 9, wherein the tile
attribute comprises at least one of coordinates or a size of a
tile.

11. The rendering apparatus of claim 8, wherein in
response to no previous tile being identical to the current
tile, the pixel processor is further configured to generate the
image of the current tile by performing pixel processing on
the current tile, and to generate a final image by combining
images generated for all tiles included in a current frame.

12. The rendering apparatus of claim 8, wherein the pixel
processor is further configured to re-uses the image of the
previous tile by copying the image of the previous tile to an
image area of the current tile.

13. The rendering apparatus of claim 8, wherein the pixel
processor is further configured to re-uses the image of the
previous tile by setting a pointer of an image area of the
current tile to indicate an image area of the previous tile.

14. The rendering apparatus of claim 8, wherein the
previous tile comprises at least one of an image, information
about a tile attribute, a processing order in which primitive
lists are processed, or a draw identification (ID).

15. The rendering apparatus of claim 8, wherein the
previous draw command is determined to be identical to the
draw command of the current tile based on a comparison of
binding information of the current draw command with
binding information of the previous draw command.

16. A non-transitory computer-readable recording
medium having embodied thereon a program for executing
the method of claim 1.

#* #* #* #* #*

